Tech Note

Extending the Delphi IDE

Bruno Fierens

March 2011
Americas Headquarters EMEA Headquarters Asia-Pacific Headquarters
100 California Street, 12th Floor York House L7. 313 La Trobe Street
San Francisco, California 94111 18 York Road Melbourne VIC 3000
Maidenhead, Berkshire Australia

SL6 1SF, United Kingdom

http://www.embarcadero.com/rad-in-action
http://www/embarcadero.com

@ Tech Note Extending the Delphi IDE

INTRODUCTION

Embarcadero Delphi® offers a rich API that enables developers to customize and extend
the IDE in many ways. The goal of this whitepaper is to introduce a number of these APls
to you and provide samples on how they can be used. Among these samples are also a
number of free IDE extensions provided by TMS software. The APIs available to extend the
IDE are under the umbrella "OTAPI", which is an acronym for Open Tools API. This
whitepaper and the samples have been written for and tested with Delphi XE.

ADDITIONAL INFORMATION

Other than this whitepaper, a lot of information on OTAPI can be found in the source code
that is provided with Delphi XE. The APl is declared in the unit TOOLSAPI.PAS. For Delphi
XE, this unit can be found, by default, in the folder:

C:\Program Files\Embarcadero\RAD Studio\8.0\source\ToolsAPI

It not only contains the definitions of the interfaces but also has a lot of useful comments
in the source code that can help in learning the purpose of the interfaces. You will
regularly want to refer to this valuable source of information..

Another interesting source of information is the GExperts source code and OTAPI FAQ
page which you can find at: http://www.gexperts.org/otafag.html

BASIC ARCHITECTURE

The APl is heavily based on interfaces. The interfaces typically start with the prefix IOTA or
INTA. The IDE exposes a lot of interfaces that can be called from the plugin; conversely,
the IDE itself can also call code from the plugin when a specific action is triggered in the
IDE. To inform the IDE that the plugin has a handler for these actions, in most cases, this is
done by writing a class descending from TNotifierObject that implements an interface and
register the class with the IDE. As a plugin writer, you will find yourself mostly writing code
that calls the IDE interfaces and write classes that implement interfaces that will be called
from the IDE.

AREAS OF THE IDE THAT CAN BE EXTENDED

The Delphi IDE can be extended in many ways. This is a brief overview of the most
common areas of extending the IDE:

- Create and add custom docking panels

(Ombarcadero -nd tmssoftware.com -

http://www.gexperts.org/otafaq.html

@ Tech Note Extending the Delphi IDE

It is possible to add custom docking panels like the component palette panel, the
object inspector panel etc...

- Interact with the code editor
Interfaces are offered to programmatically manipulate the Delphi IDE code editor;
for example, to insert snippets of code, replace text, handle special key sequences,
add custom syntax highlighters and more...

- Interact with Code Insight
Code Insight in the editor can be customized as well, offering custom help texts on
specific constructs in the code.

- Interact with the Project Manager
The IDE allows you to have custom context menus to projects and files in the IDE
Project Manager tool panel.

- Add custom wizards, items to the repository
It is possible to add custom items or start custom wizards from items added to the
Delphi repository. From these wizards, new project types, specific form types, or
data modules can be created.

- Interact with ToDo items
An APl is also available to interact with ToDo items in code from a Delphi IDE
extension.

- Interact with debugger, create custom debugger visualizers
In newer Delphi versions, an IDE extension can be added that provides a custom
display of a specific data type while debugging.

- Interact with the form designer
From a Delphi plugin, an APl is available to interact with the form designer as well.

- Splash screen notifications
An interface is provided to add custom text on the splash screen during the startup
of the IDE.

In this whitepaper, various parts of the OTAPI will be covered such as creating custom

docking panels, accessing the editor, the project manager, the repository, and extending
various menus.

(Ombarcadero -nd tmssoftware.com 2.

@ Tech Note Extending the Delphi IDE

HISTORY OF THE OPEN ToOoOLS API

As Delphi has grown through the years, so has the API to extend the IDE. In Delphi XE,
existing APIs to customize the IDE have been extended, and new APIs have been added.
As the OTAPI is mainly interface based, new capabilities are generally offered via new
interfaces. To keep things organized, the Delphi team adopts the naming convention for
additional interfaces that descend from an earlier interface by giving the new interface the
name of the original interface with a suffix using the IDE version. Please note that the IDE
version is different from the compiler version. For example, the interface to extend the
repository was originally IOTARepositoryWizard and in later IDE versions, it was extended
and named IOTARepositoryWizardé0 and later to IOTARepositoryWizard80.

If a plugin wants to take advantage of some new capabilities exposed in later versions of
the IDE, it should provide a class that implements the newest interface. At the same time,
a plugin that was created for an older IDE version and that implements for example the
original IOTARepositoryWizard interface will keep working.

For example:

- |OTARepositoryWizard = interface(IOTAWizard)
Base interface for extending the repository.

- IOTARepositoryWizardé0 = interface(IOTARepositoryWizard)
Extended interface offered from Delphi 7 to provide a way to differentiate between
VCL and CLX projects.

- |OTARepositoryWizard80 = interface(IOTARepositoryWizardé0)
New interface introduced in Delphi 2005 to provide access to the new gallery

hierarchical structure of the repository and access to multiple personalities the IDE
can host, in the case of Delphi 2005 being VCL and VCL.NET.

This is the list of IDE version numbers that are being used in various OTAPI interfaces:

60 = Delphi 7

80 = Delphi 8

90 = Delphi 2005
100 = Delphi 2006
110 = Delphi 2007
120 = Delphi 2009
140 = Delphi 2010
145 = Delphi XE

(Ombarcadero -nd tmssoftware.com -3-

@ Tech Note Extending the Delphi IDE

ACCESSING THE IDE

While the IDE offers various interfaces for implementation that will be called when a
particular part of the IDE is accessed, in many cases, it is necessary to directly call some
IDE functionality from a plugin. To allow this, Delphi exposes many interfaces. When the
IDE starts it creates a global variable BorlandIDEServices that implements various
interfaces. When the unit ToolsAPI is in the uses list, this variable BorlandIDEServices is
accessible and can be used to query the interface needed.

For example:

// check 1f the BorlandIDEServices global variable is assigned
1T Assigned(BorlandIDEServices) then
begin
// access the 10TAModuleServices interface implemented iIn
BorlandIDEServices and call CloseALL to close all modules
(BorlandIDEServices as 10TAModuleServices) .CloseAll;
end;

The following interfaces are exposed by the Delphi XE IDE:

- INTAServices
Interface to access IDE toolbars, menu, imagelists, actions

- |OTAActionServices
Interface to open, close, save files

- IOTACodelnsightServices
Interface gives access to the code insight managers and their interface
IOTACodelnsightManager

- |OTADebuggerServices
Interface gives access to debugger related functions such as breakpoints, event
logging, processes

- |OTAEditorServices
Interface gives access to the IDE editor, the edit buffer, edit view, options

- |IOTAEditorViewServices
Interface gives access to the IDE editor view

- INTAEnvironmentOptionsServices

(Cmbarcadero -~ tmssoftware.com 4

@ Tech Note Extending the Delphi IDE

Interface to add options in the IDE Tools, Options menu

- IOTAKeyBindingServices
Interface to access shortcut key bindings

- IOTAKeyboardServices
Interface to give access to IDE macro recording & playback

- IOTAMessageServices
Interface to access the message view, allows adding custom messages to the IDE
message view, clear messages

- IOTAModuleServices
Interface to access the modules (e.g. projects, source files, form files, etc.) opened
in the IDE

- |OTAPackageServices
Interface to access the list of installed packages & components in the IDE

- IOTAServices
Interface exposing general IDE info like product identifier, application folder, bin
folder, installed languages

- |OTAToDoServices
Interface to access the ToDo items for a module

- |OTAWizardServices
Interface to access and extend the IDE repository

- IOTAHighlightServices
Interface to access the syntax highlighters and to add custom syntax highlighter
interfaces IOTAHighlighter

- |OTAPersonalityServices
Interface to access installed IDE personalities, file extension associations with
personalities

- IOTACompileServices

Interface to the compiler allow to start and stop compilation of projects and handle
notifications when compiling is done.

(Ombarcadero -nd tmssoftware.com 5-

@ Tech Note Extending the Delphi IDE

GETTING STARTED TO CREATE AN IDE PLUGIN

IDE plugins are compiled packages installed into the IDE. This means the IDE will load the
package during startup. The package can perform its initialization both with code
executed in the Initialization section of the units in the package as well as providing a
Register method from where classes are registered with the IDE. This is very similar to a
package that installs a component in the IDE where the Register procedure is called by the
IDE from where the RegisterComponents() call registers the new components in the IDE.
To install an IDE plugin or extension, the minimum that needs to be done is creating a
class of the type TNotifierObject that implements the IOTAWizard interface or one of its
descendents and register it:

unit MyIDEPlugin;
interface
uses

Classes, ToolsAPI;

TMyIDEWizard = class(TNotifierObject, 10TAWizard)
// implement interfaces here
end;

implementation

//register with the IDE:

procedure Register;

begin

RegisterPackageWizard(TMyIDEWizard.Create) ;
end;

It is the IDE that will then call the appropriate interface methods when needed.

(Ombarcadero ¢ imssoftware.com 6-

@ Tech Note

Extending the Delphi IDE

EXTENDING THE IDE WITH CUSTOM REPOSITORY

WIZARDS

P
@ Mew Items

{7 Web Documents

4 {7 Delphi Projects 3, Search
-[77] ActiveX
7 Delphi Files F L = @
{77 Inheritable Items E rE
--{77] TM5 Forms Consale Control Panel Dynamic-ink MDI Package Resource DLL
771 WCL for the Web Application Application Library Application Wizard
--[77] WebBroker _ —
{77 WebServices E] E
{7 WehSnap
5] XML 501 Service WCL Forms
] Other Files Application Application Application
{77 Unit Test

Our first in depth look at extending the IDE is about creating custom repository wizards.
To create a plugin that will extend the repository, it is necessary to write a class that
implements the IOTAWizard interface and the IOTARepositoryWizard interface. The
IOTARepositoryWizard interface has 3 versions. It was extended in Delphi 7 to enable

differentiating between repository items for VCL or CLX projects. It was extended again in
Delphi 2005 where hierarchical categories of repository items were introduced. Note that it
is only necessary to implement the latest IOTARepositoryWizard80 interface if you want to
take advantage of the new features. The original IOTARepositoryWizard interface works
fine in Delphi XE. For this example, we will take advantage of the categories exposed in
the IOTARepositoryWizard80 interface. As such, we will write a class descending from
TNotifierObject that implements the IOTAWizard interface and the
|IOTARepositoryWizard.

(Cmbarcadero -~ tmssoftware.com 7

@ Tech Note Extending the Delphi IDE

TMyProjectWizard = class(TNotifierObject, I0TAWizard,
I0TARepositoryWizard80)

// implement interfaces here

end;

This class will then be registered with the IDE:

procedure Register;

begin
RegisterPackageWizard(TMyProjectWizard.Create) ;

end;

The next step is to implement the interfaces. The IOTAWizard interface informs the IDE of
the plugin name, ID and provide a method to execute the plugin. The
|IOTARepositoryWizard interface provides the IDE with information about the repository
item, the author, its glyph and also the category and personality for which the repository
item is provided.

The class definition becomes:

TMyProjectWizard = class(TNotifierObject, I0TAWizard,
I0TARepositoryWizard80)
public
// 10TAWizard
function GetlIDString: string;
function GetName: string;
function GetState: TWizardState;
procedure Execute;

// 10TARepositoryWizard
function GetAuthor : string;
function GetComment : string;
function GetPage : string;
function GetGlyph: Cardinal;

// 10TARepositoryWizard80

function GetGalleryCategory: 10TAGalleryCategory;
function GetPersonality: string;

function GetDesigner: string;

(Ombarcadero -nd tmssoftware.com 8-

@ Tech Note Extending the Delphi IDE

end;

The full implementation of the wizard class methods can be found in sample 1.

One part of the interface informs the IDE about the new repository item, the Execute
method will be called when the user clicks that repository item in the IDE. It is in this
Execute method that the plugin needs to take the necessary steps to create the source
files for the selected repository item. In the Execute method, we grab the
BorlandIDEServices global variable and use the IOTAModuleServices interface to query
the default unit, class, and filename that the IDE proposes for creating a new instance of
the repository item. With this unit, class and filename, the IOTAModuleServices
CreateModule method is then used to create the actual new module that is added to the
active project.

The Execute method

procedure TTMSFormWizard.Execute;

var
LProj: 10TAProject;

begin
1T Assigned(BorlandIDEServices) then
begin

// use the 10TAModuleServices interface to query a new default
unit, class & filename

(BorlandIDEServices as
I0TAModuleServices) .GetNewModuleAndClassName(™ ", FUnitldent,
FClassName, FFileName);

FClassName := SFormName + Copy(FUnitldent, 5,
Length(FUnitldent));

LProj := GetActiveProject;

iT LProj <> nil then

begin

(BorlandIDEServices as

I0TAModuleServices) .CreateModule(TMyUnitCreator .Create(LProj,
FUnitldent, FClassName, FFileName));

end;

end;

end;

(Ombarcadero -nd tmssoftware.com 9.

@ Tech Note Extending the Delphi IDE

The module creator is a class that implements the IOTACreator, IOTAModuleCreator
interfaces. Via these interfaces, the actual source code file and form file can be created.

TMyUnitCreator = class (TNotifierObject, 10TACreator,
I0TAModuleCreator)
public
// 10TACreator
function GetCreatorType: string;
function GetExisting: Boolean;
function GetFileSystem: string;
function GetOwner: I0TAModule;
function GetUnnamed: Boolean;

// 10TAModuleCreator

function GetAncestorName: string;

function GetlmplFileName: string;

function GetIntfFileName: string;

function GetFormName: string;

function GetMainForm: Boolean;

function GetShowForm: Boolean;

function GetShowSource: Boolean;

function NewFormFile(const Formldent, Ancestorldent: string):
I0OTAFile;

function NewlmplSource(const Moduleldent, Formldent,
Ancestorldent: string): 10TAFile;

function NewlntfSource(const Moduleldent, Formldent,
Ancestorldent: string): 10TAFile;

procedure FormCreated(const FormeEditor: I0TAFormEditor);

The most important methods in this interface are the NewFormFile and the
NewlmplSource methods. These functions should return a class implementing the
IOTAFile interface that will return the actual code for the .DFM form file and the .PAS
source code file. The NewlIntfSource function is not used for Delphi forms or projects, only
for C++ header files.

The IOTAFile interface is an interface that simply returns the content of the .DFM or .PAS
file as a string and the file age as TDateTime.

TCodeFile = class(TInterfacedObject, 10TAFile)
protected
function GetSource: string;

(Ombarcadero -d tmssoftware.com 10

@ Tech Note Extending the Delphi IDE

function GetAge: TDateTime;
end;

Note that it is important that the .DFM and .PAS file returned contain valid code. The IDE
will try to parse the form file and source code and should the parsing fail, the IDE will not
create the file.

In the sample, the form unit & DFM file are stored in a resource file created with BRCC32
from the .RC file:

TCompanyFormSRC 10 " Unit1.pas"
TCompanyFormFRM 10 " Unit1.DFM"

and the IOTAFile implementing class retrieves the source code + DFM file from the
resource, replaces the form name, form class, unit name with the new name and returns it
via the GetSource function:

function TUnitFile.GetSource: string;
var
Text, ResName: AnsiString;
Reslnstance: THandle;
HRes: HRSRC;

begin

Resname := AnsiString(SCodeResName);

ReslInstance := FindResourceHlnstance(HInstance);

HRes :-= FindResourceA(ReslInstance, PAnsiChar(ResName),
PAnsiChar(10));

Text := PAnsiChar(LockResource(LoadResource(Reslnstance,
HRes))):

SetLength(Text, SizeOfResource(Reslnstance, HRes));
Result := Format(string(Text), [FModuleName, FFormName,
FAncestorName]);
end;

EXTENDING THE IDE WITH CUSTOM DOCKING
PANELS

Creating a custom dock panel for the IDE is a different type of IDE extension and we do
not need to register a IOTAWizard interface implementing class with the IDE. Instead, the

(Ombarcadero -nd tmssoftware.com -

@ Tech Note Extending the Delphi IDE

plugin should create an instance of a form, provide a way for the user to show or hide the
docking panel, persist its state with the IDE desktop, and, finally, destroy the docking
panel upon exiting the IDE. The class used for the IDE docking panel is implemented in
the units DockForm, DockToolForm that are part of the DesignIDE package. Two different
types exist: TDockableForm and TDockableToolBarForm. We will need to write a Register
procedure in a unit of the plugin package. This Register procedure will be called by the
IDE after loading the package. From this Register procedure, we can create the docking
panel and insert a new menu item in the IDE to show/hide the panel. The code in the
finalization section of the unit will be called when the IDE is closed and thus, the panel can
be destroyed in this phase.

The skeleton for the unit to create the custom docking panel and destroying it is as such:

unit MyIDEDockPanel;
interface

procedure Register;
implementation

uses
MyDockForm;

var
My IDEDockForm: TMyDockForm;

procedure Register;

begin
it MyIDEDockForm = nil then
begin
My IDEDockForm := TMyIlDEDockForm.Create(nil);
end;
end;

finalization
My IDEDockForm._Free;

end.

(Ombarcadero -nd tmssoftware.com 12-

@ Tech Note Extending the Delphi IDE

TMyDockForm is a class that descends either from TDockableForm and
TDockableToolBarForm. To play well with the IDE desktop persisting functionality, it is
required to initialize the DeskSection, AutoSave and SaveStateNecessary properties of the
base class:

constructor TMylIDEDockForm.Create(AOwner: TComponent);

begin
inherited;
DeskSection := Name;
AutoSave :-= True;
SaveStateNecessary := True;
end;

destructor TMyIDEDockForm.Destroy;
begin
SaveStateNecessary :-= True;
inherited;
end;

In addition, the custom docking panel class should be registered with the IDE desktop
with the code:

RegisterDesktopFormClass(TMyIDEDockForm,
My IDEDockForm._Name ,My IDEDockForm.Name) ;

iT @RegisterFieldAddress <> nil then
RegisterFieldAddress(MyIDEDockForm.Name, @MylDEDockForm);

(Ombarcadero -nd tmssoftware.com 13-

@ Tech Note Extending the Delphi IDE

The result of the docking panel plugin is:

@ TMSDockForm - Embarcadero RAD Studio XE -
File Edit 5Search View Refactor Project
-9 - B H-8| 88|
MyDockForm HEIE |
Insert copyright
Ek Structure ez
=[] Classes
=% TMyDockForm{TDackableForm)
=[] Public

Full code of the docking panel plugin can be found in the code download in the folder
DockForm.

ACCESSING THE DELPHI CODE EDITOR

Access to the IDE code editor is made possible via IOTAEditorServices interface that is
implemented in the BorlandIDEServices global variable. The IOTAEditorServices provides
access to the active editor view via IOTAEditorServices. TopView: IOTAEditView. The
IOTAEditView interface provides access to editor bookmarks, cursor position, scrolling,
etc. In turn, this IOTAEditView provides access to the editor buffer. The buffer exposes the
interface IOTAEditBuffer. This IOTAEditBuffer interface allows manipulation of text, for
example insertion and deletion.

(Cmbarcadero ¢ tmssoftware.com 14-

@ Tech Note Extending the Delphi IDE

This code snippet will grab the IOTAEditorServices from BorlandIDEServices, get the
IOTAEditView interface and access the IOTAEditBuffer to insert text at the top of the
source code file in the active editor window:

var
EditorServices: I10TAEditorServices;
EditView: I0TAEditView;
copyright: string;

copyright :-= “Copyright © 2011 by tmssoftware.com”;
EditorServices := BorlandIDEServices as 10TAEditorServices;
EditView :-= EditorServices.TopView;

1T Assigned(EditView) then
begin
// position cursor at 1,1
EditView.Buffer_EditPosition.Move(l,1);
// insert copyright notice on top
EditView.Buffer_EditPosition. InsertText(copyright);
end;

EXTENDING THE DELPHI IDE MENU

The Delphi IDE provides the IOTAMenuWizard interface to add items the Delphi IDE main
menu. The limitation of this interface is that all menu items added this way will be
organized under the help menu. We will offer an alternative method to insert new menu
items anywhere in the existing Delphi IDE main menu.

To add a new menu item via IOTAMenuWizard, create a class that descends from
TNotifierObject and implements IOTAWizard, IOTAMenuWizard:

TMyMenultem = class(TNotifierObject, 10TAWizard, I0TAMenuWizard)
function GetlIDString: string;
function GetName: string;
function GetState: TWizardState;
procedure Execute;
function GetMenuText: string;
end;

(Ombarcadero -nd tmssoftware.com 15

@ Tech Note Extending the Delphi IDE

and register this class with the IDE via the unit Register procedure:

RegisterPackageWizard(TMyMenultem.Create) ;

When the menu item is clicked in the IDE, Delphi will call the Execute method from where
your custom action can be performed.

Alternatively, it is possible to get access to the Delphi IDE main menu as a TMainMenu
class and use the common TMainMenu methods to insert a TMenultem instance in this
menu.

To do this, use the INTAServices40 interface implemented in BorlandIDEServices and call
its function MainMenu that returns a TMainMenu instance.

var
NTAServices : INTAServices40;
mnuitem: TMenultem;
mnuitem := TMenultem.Create(nil);
mnuitem.Caption := “New item”;

NTAServices := BorlandIDEServices as INTAServices40;
NTAServices.MainMenu. ltems.Add(mnuitem) ;

When the first technique with the IOTAMenuWizard is used, the IDE will automatically
remove the menu item when the plugin is uninstalled. Using the second technique, we'll
need to remove the menu item in code. As the interface is based on TMainMenu, call
ltems.Remove() to remove the item from the menu and destroy it as well as the object that
handles the menu click. The full code to add and remove the menu item becomes:

procedure AddIDEMenu;

(Ombarcadero -nd tmssoftware.com 16

@ Tech Note Extending the Delphi IDE

var
NTAServices: INTAServices40;

begin
NTAServices := BorlandIDEServices as INTAServices40;

// avoid iInserting twice
iT NTAServices.MainMenu.ltems[5].Find(" INTAServices40Menu®™) =
nil then

begin
CustomMenuHandler := TCustomMenuHandler .Create;
mnuitem := TMenultem.Create(nil);
mnuitem.Caption := "INTAServices40Menu”;
mnuitem.OnClick := CustomMenuHandler_.HandleClick;
NTAServices.MainMenu. ltems[5] .Add(mnuitem)

end;

end;

procedure RemovelDEMenu;
var
NTAServices: INTAServices40;

begin
iIT Assigned(mnuitem) then
begin
NTAServices := BorlandIDEServices as INTAServices40;

NTAServices._MainMenu. ltems[5].Remove(mnuitem);
mnuitem.Free;
1T Assigned(CustomMenuHandler) then
CustomMenuHandler .Free;
end;
end;

The full sample for extending the IDE main menu can be found in the code download in
the IDEMenu folder.

(Ombarcadero -nd tmssoftware.com 17

@ Tech Note Extending the Delphi IDE

EXTENDING THE DELPHI PROJECT MANAGER
CONTEXT MENU

In this section, we will access to the IDE project manager, its context menu, and the
projects & files opened in the project manager. Furthermore, we will extend the context
menu with custom actions. To start, we will make use of the IOTAProjectManager
interface, available in the BorlandIDEServices global variable. The IOTAProjectManager
interface exposes the function AddMenultemCreatorNotifier that needs to be called to
pass an instance of a class descending from TNotifierObject and implementing the
IOTAProjectMenultemCreatorNotifier interface. Basically, this informs the IDE that before
it shows the project manager context menu, that it should query our plugin if one or more
custom context menu items should be added.

The class for the context menu item creator is:

TMyProjectContextMenu = class(TNotifierObject,
IOTAProjectMenultemCreatorNotifier)

procedure AddMenu(const Project: 10TAProject; const ldentList:
TStrings; const ProjectManagerMenuList: llInterfacelList;
IsMultiSelect: Boolean);

end;

Via the parameter IOTAProject, the code can determine for which project the context
menu is shown and via the parameter ProjectManagerMenulist, instances of a
TMyProjectContextMenuLocal class can be added. In this sample code snippet, a context
menu item is unconditionally added, regardless of of which item is right-clicked in the
project manager:

procedure TMyProjectContextMenu.AddMenu(const Project:
IOTAProject; const ldentList: TStrings; const
ProjectManagerMenuList: lInterfacelList; IsMultiSelect: Boolean);
var

Mnultem: TMyProjectContextMenuLocal;

begin
Mnultem := TMyProjectContextMenuLocal .Create;
ProjectManagerMenuList.Add(Mnultem)

end;

(Ombarcadero -d tmssoftware.com 18-

@ Tech Note Extending the Delphi IDE

The IdentList is a stringlist holding string identifiers of what item type is right clicked. This
is declared in TOOLSAPI.PAS and can be:

sBaseContainer = "BaseContainer”;

sFileContainer = “FileContainer”;
sProjectContainer = "ProjectContainer”;
sProjectGroupContainer = "ProjectGroupContainer”;
sCategoryContainer = “CategoryContainer”;
sDirectoryContainer = “DirectoryContainer”;
sReferencesContainer = "References”;
sContainsContainer "Contains”®;
sRequiresContainer "Requires”;

If the context menu item should only appear when the project group is right-clicked, the
code would be:

procedure TMyProjectContextMenu.AddMenu(const Project:
IOTAProject; const ldentList: TStrings; const
ProjectManagerMenuList: lInterfaceList; IsMultiSelect: Boolean);
var
Mnultem: TMyProjectContextMenuLocal ;
begin
iIT (ldentList. IndexOf(sProjectGroupContainer) <> -1) then
begin
Mnultem := TMyProjectContextMenuLocal .Create;
// Set menu i1tem properties here
Mnultem.OnExecute := MenuClickHandler;
ProjectManagerMenuList_Add(Mnultem)
end;
end;

The TMyProjectContextMenulocal is a class descending from TProjectContextMenulocal
and should implement the interfaces IOTALocalMenu and IOTAProjectManagerMenu.
This interface consists of methods:

TMyProjectContextMenultem = class(TProjectContextMenuLocal,
I0OTALocalMenu, I0TAProjectManagerMenu)
public
// 10TALocalMenu

(Ombarcadero -nd tmssoftware.com 19

@ Tech Note Extending the Delphi IDE

function GetCaption: string;
function GetChecked: Boolean;
function GetEnabled: Boolean;
// 10TAProjectManagerMenu interface
function GetlsMultiSelectable: Boolean;
procedure SetlsMultiSelectable(Value: Boolean);
procedure Execute(const MenuContextList: lInterfacelList);
overload;
function PreExecute(const MenuContextList: llnterfacelList):
Boolean;
function PostExecute(const MenuContextList: IlnterfacelList):
Boolean;
property IsMultiSelectable: Boolean read GetlsMultiSelectable
write SetlsMultiSelectable;
end;

With the IOTALocalMenu, we can set the caption, checked state, and enabled state of the
menu item. With the IOTAProjectManagerMenu interface, we can define whether or not
the context menu item supports executing on multiple selected items in the project
manager. The methods PreExecute, Execute, PostExecute are called, respectively, before
actual execution of the Execute, when the item is selected, and after the actual execution
of Execute. The parameter of the Execute methods is the MenuContextList that is a list of
items selected in the project manager.

From the Execute method, the project opened for which the context menu item was
selected is retrieved with following code:

procedure TMyProjectContextMenulLocal .Execute(const
MenuContextList: lInterfacelList);
var

MenuContext: 10TAProjectMenuContext;

Project: 10TAProject;
begin

MenuContext := MenuContextList.ltems[0] as
I0TAProjectMenuContext;

Project := MenuContext.Project;
end;

(Ombarcadero -nd tmssoftware.com -20-

@ Tech Note

Extending the Delphi IDE

| E customProjectMenu.dproj - Project Manager 7

B -2 & |G el E-E
File
E@ ProjectGroupl
SR] CustomP v
I ﬁ Build Cq Lompile
E} Ia_‘l Contair Euild
: @ ucdl Clean
- £ Requirs From Here
Run
Run Without Debugging
C:\DelphixE\Develd Install . dpraj
E}m CustomProjeq Uninstall rurer |
H:[l: Tool Palette Build Sooner Ctrl+Up @@
Search
Q Sear Build Later Ctrl+Down
Delphi Projec
Delphi Projeg Show in Explorer
Other Files
= Add...
Unit Test
Web Docume| Add New
Delphi Projec Add Reference...
Delphi Projec]
& Delphi Projed Rermove File...
Delphi Projec Rernove Project
Delphi Projec Save
Delphi Projec
Delpis Projed Save As...
Rename

Add to Version Control

Activate

View Source Ctrl+V
Sort By

Dependencies...

Compare

Madeling Support...

Format Project Sources...

Qptions,.

Custom item

Cmbarcadero -~ tmssoftware.com

_21 -

@ Tech Note Extending the Delphi IDE

The full sample for adding a project manager context menu item can be found in the code
download in the ProjMenu folder.

ADDING AN IDE EDITOR CONTEXT MENU ITEM
AND GRABBING THE SELECTED TEXT

If your plugin wants to offer some processing on selected text in the editor, you may want
to add a custom item in the IDE editor context menu that, when clicked, grabs the
selected text and processes it. To add such a context menu, we need to get access to the
menu, which, in turn, first need access to the editor. Please note that the editor is not
immediately available upon startup of the IDE, therefore we can’t get access to the editor
in the plugin initialization code. What we needed is to register a class that implements the
INTAEditServicesNotifier interface. The IDE calls this interface when the editor is activated
in the IDE. At that point, the plugin code can be sure that the editor instance exists. The
INTAEditServicesNotifier interface offers several methods of which only
EditorViewActivated is of interest. The interface of this INTAEditServicesNotifier
implementing class is:

TEditNotifierHelper = class(TNotifierObject, 10TANotifier,
INTAEditServicesNotifier)

procedure WindowShow(const EditWindow: INTAEditWindow; Show,
LoadedFromDesktop: Boolean);

procedure WindowNotification(const EditWindow: INTAEditWindow;
Operation: TOperation);

procedure WindowActivated(const EditWindow: INTAEditWindow);

procedure WindowCommand(const EditWindow: INTAEditWindow;
Command, Param: Integer; var Handled: Boolean);

procedure EditorViewActivated(const EditWindow:
INTAEditWindow; const EditView: I10TAEditView);

procedure EditorViewModified(const EditWindow: INTAEditWindow;
const EditView: I0TAEditView);

procedure DockFormVisibleChanged(const EditWindow:
INTAEditWindow; DockForm: TDockableForm);

procedure DockFormUpdated(const EditWindow: INTAEditWindow;
DockForm: TDockableForm);

(Ombarcadero -nd tmssoftware.com 22

@ Tech Note Extending the Delphi IDE

procedure DockFormRefresh(const EditWindow: INTAEditWindow;
DockForm: TDockableForm);

end;

This notifier class is registered with the IDE via the code:

procedure Register;

var
Services: I0TAEditorServices;

begin
Services := BorlandIDEServices as I0TAEditorServices;
Notifierlndex :=

Services.AddNotifier(TEditNotifierHelper.Create);

end;

The AddNotifier function returns a unique index with which the class is registered. This
Notifierlndex variable in the unit needs to be used to unregister the notifier class again
when the plugin is uninstalled. As such, we need to perform this unregister in the
finalization section of the unit:

procedure RemoveNotifier;
var
Services: I10TAEditorServices;

begin
if Notifierlndex <> -1 then
begin
Services := BorlandIDEServices as I0TAEditorServices;
Services.RemoveNotifier(Notifierindex);
Notifierlndex := -1;
end;
end;

finalization
RemoveNotifier;
end.

With this notifier installed, it is now possible to get access to the IDE editor context menu

when the editor first becomes active and install our custom menu item. The code used to
do this is:

(Ombarcadero -nd tmssoftware.com -23-

@ Tech Note Extending the Delphi IDE

var
custommenu: TMenultem;

procedure TEditNotifierHelper.EditorViewActivated(const
EditWindow: INTAEditWindow; const EditView: I0TAEditView);
begin

if not Assigned(custommenu) then

begin

AddEditContextMenu;

end;

end;

procedure AddEditContextMenu;
var
editview: I0TAEditViewl40;
popupmenu: TPopupMenu;

begin
editview = (BorlandIDEServices as 10TAEditorServices)._TopView;
popupmenu :=
editview.GetEditWindow.Form.FindComponent(“EditorLocalMenu®) as
TPopupMenu;
custommenu := TMenultem.Create(nil);
custommenu.Caption := “Custom context menu item-;
custommenu.OnClick := mnuHandler.MenuHandler;
popupmenu. I'tems.Add(custommenu) ;
end;

initialization
custommenu := nil;
finalization

custommenu.Free;
end.

To handle the click on the editor context menu item, a class with the method
MenuHandler is created:

TMenuHandler = class(TComponent)

procedure MenuHandler(Sender: TObject);
end;

(Ombarcadero -nd tmssoftware.com 24

@ Tech Note Extending the Delphi IDE

and this MenuHandler() method can get access to the editor view and get the selected
text with:

procedure TMenuHandler _MenuHandler(Sender: TObject);
var

editview: I0TAEditViewl40;

editblock: 10TAEditBlock;

begin
editview = (BorlandIDEServices as I0TAEditorServices).TopView;

// get the selected text in the edit view
editblock := editview.GetBlock;

ShowMessage(“Context menu click: * +
inttostr(editblock.StartingColumn)+~:"+inttostr(editblock.Starting
Row) + * - ° +
inttostr(editblock.EndingColumn)+-: "+inttostr(editblock.EndingRow)
)

// 1t there i1s a selection of text, get it via editblock.Text

iT (editblock.StartingColumn <> editblock.EndingColumn) or
(editblock.StartingRow <> editblock_EndingRow) then
ShowMessage("Selected text: " + editblock.Text);
end;

The full sample for adding an editor context menu item can be found in the code
download in the EditorContextMenu folder.

ADDING INFORMATION ON THE DELPHI SPLASH
SCREEN

To give the IDE plugin we create a finishing touch and to inform the user it is properly
installed in the IDE, we can add some information to the splash screen during the startup
of the IDE. The TOOLSAPI unit exposes the SplashScreenServices
IOTASplashScreenServices interface. This interface offers the method AddPluginBitmap:

procedure AddPluginBitmap(const ACaption: string; ABitmap:
HBITMAP; AlsUnRegistered: Boolean = False; const ALicenseStatus:
string = ""; const ASKUName: string = "7);

(Ombarcadero -nd tmssoftware.com 25

@ Tech Note Extending the Delphi IDE

The parameters are:

- ACaption : text to appear on the splash screen

- ABltmap: bitmap handle to show in the splash screen associated with the plugin for
a 24x24 bitmap

- AlsUnRegisterd: this is a boolean parameter indicating whether the text should
appear in red font for unregistered products or regular white text for registered
products.

- AlLicenseStatus: this is a text that can display for example 'Trial' or 'Registered'.

- ASKUName: this text can show the name of the SKU if different SKUs exist for the

plugin.

In the initialization section of a unit within a package loaded by the IDE, we can use this
interface to add custom information to the splash screen while the IDE is loading:

procedure AddSplashText;

var
bmp: TBitmap;
begin
bmp := TBitmap.Create;
bmp . LoadFromResourceName(HInstance, “PLUGINBITMAPRESOURCE™);
SplashScreenServices.AddPluginBitmap("Plugin product XYZ © 2011
by MyCompany®,bmp.Handle,false, "Registered™,"");
bmp.Free;
end;

initialization
AddSplashText;
end.

The full sample for adding an entry in the IDE splash screen can be found in the code
download in the SplashScreen folder.

(Ombarcadero -nd tmssoftware.com 26

@ Tech Note Extending the Delphi IDE

FREE TMS IDE PLUGINS FOR DELPHI XE

Based on the techniques presented in this whitepaper, we offer a couple of free IDE
plugins for Delphi XE. The free plugins can be found in the folder “TMS plugins for Delphi
XE" in the code download.

TMS PROJECT MANAGER PLUGIN

This plugin uses the project manager context menu extension and the IDE menu extension
to offer access to the plugin options. It adds a context menu to the Project Manager with 3
new options:

1) ZIP project: this allows to create a ZIP file containing the project files. In the plugin
options, it can be configured what file types to include in a project.
2) ZIP & Email project: this option will try to use the default email client to send the project

ZIP file by email.
3) ZIP & Upload project: this option will try to upload the project ZIP file to an FTP server

defined in the plugin options

s EE Demo.dproj - Project Manager
B -2 @ -|Smla| 8-
File
E_'E ProjectGroups

S Demo. gy

.{’;.Buil Compile

UDE Build
Clean
Erom Here 3
Build Sooner Ctrl+Up

Build Later Ctrl+Down
Zip Project
Zip & Upload Project

(Cmbarcadero ¢ tmssoftware.com 27

@ Tech Note

Extending the Delphi IDE

TMS WHAT'S NEW PLUGIN

This plugin builds on the technique to create a custom IDE docking form. This docking
form has three tabs. It displays the latest component releases from TMS software, the blog
feed as well as the tweets from TMS software.

L} Projectt - Delphi 2010 - Usal0

T TMS Whats biew
B pow B roduct reases.

Nawest TMS Blog Posts

Reading abszul your favorite tool Deldgphi
15/12/200% Asthor ; Brung Faereng

Witkere do you weant . TMS Do g i 2610 7

0 1272808 Aithar ; Brung Fieres

THS Conap I Fack v5.4 released

SR80 Authar © Brune Fiemms

THS TAdwStringGrd v5.0 rebeased

#'11280% Authar ; Bruno Fismses

THS IntraWeb Component Pack Pro v3.8 released

11172008 Authar : Bruns Fisres

THS Advanced Charts [THS IntraWeb Charts w25 releaced
A28 Alghar ; Bruns Fieeas

THS at Delphi Developer Workshop in Utrecht

L LE08 Authar : Bruns Fiews

B e Tz Bog st [0 e T T

File Edit Search View FRefactor Preject Run Compersnt Toel

AT UE-09882 -0

o

g2

True Colors

#E Object epector

Farmll 7

_|I5|q'-u--' Evanis

(% Becton
e iranCanirel
g alions
BgriNiPMarpm Falee
AphaFlend False
BphaTlandis e 35

4+ Bewhars [, miTiog]
Ao _False
LEo] Falne

Window Halp (3 Defaut
e - @
il wekome Page | Uit 10

anit Oeicldy
intarfaces

ases
Windows, Heasages, E
Dialogs:

type
TFormlD = olass{TFoz
private
{ Prrivate d=ciarat
Pkl e
{ PFablic desclarata
emed 7

var
FormliO:

TFasmll:

implemantation

#E *.dfm

Land,

Cmbarcadero -~ tmssoftware.com

-28 -

@ Tech Note Extending the Delphi IDE

TMS PRESENTATION TOOL PLUGIN

The TMS Presentation tool plugin is also based on the custom IDE docking form capability
as well as interface with the IDE editor. It offers two tab. In the first tab is a clipboard
monitor. This shows all text that was put on the clipboard. Direct drag & drop from the
docking form to the IDE editor is possible. The second tab is a list of saved code snippets.

These code snippets can be used for example when giving presentation.

(8 Prajects - Dalpks 2010 - Unifl0
Fle Edit Search Waew Refacice Project Rum Componeni Tock Window Help Q8 Defait
FET Y382 88 bl i b B

| T THS Prmsantation Tosl a i vielcome Fage | Il Unitio
! Presentation ||, Cloboand unit Toicldy

Peyrery | " f —— interface
| Uik LiniELD * uses
Findows, Hesssges, 5
nterface Dinlogs:
uses
Vindoss, Mescages. Sysiiths, variants, Classes. Graphics, Condrois, Fom type
Disinge TFormil = olaas(TFoo
| private
by T P T T 1
M E pulalis |
TroFm 0 = dlass]TForm -
prvate .
i Prvate cecrasons | ity
puililic
1 Aubvic gieclaranions | var
end: FormlO: TFosmid:
implementation
war
Farmill: TForm 1
and
ngsbermend s
R o
| H Chiject Tropecio
| Form10 -
s
| |Properties Events
Actign
ActteeConinod
ign wfione
Az AN ihitas et False
ApresBland Faisz
PR e 255
& At e

(Cmbarcadero ¢ tmssoftware.com 229-

@ Tech Note Extending the Delphi IDE

ABOUT THE AUTHOR

Bruno studied civil electronic engineering at university of Ghent and started a
career as R&D digital hardware engineer at Barco Graphics in Belgium. He
founded TMS software in 1996, developing VCL components starting with
Delphi 1. TMS software became Borland Technology Partner in 1998 and
developed the Delphi Informant award-winning grid & scheduling T
components. In 2001, he started development on IntraWeb component and in — e
2003, ASP.NET components. Currently, Bruno is developing and managing VCL,
Silverlight, ASP.NET and IntraWeb component development projects, as well as consulting
and custom project development and management on Windows, Web and iPad with
Delphi and XCode. His special areas of interest are user interfaces & hardware.

(Gmbarcadero

Embarcadero Technologies, Inc. is the leading provider of software tools that empower
application developers and data management professionals to design, build, and run
applications and databases more efficiently in heterogeneous IT environments. Over 90 of
the Fortune 100 and an active community of more than three million users worldwide rely
on Embarcadero’s award-winning products to optimize costs, streamline compliance, and
accelerate development and innovation. Founded in 1993, Embarcadero is headquartered
in San Francisco with offices located around the world. Embarcadero is online at
www.embarcadero.com.

Copyright © 2011 TMS software

(Ombarcadero -nd tmssoftware.com -30-

http://www.embarcadero.com/

	Introduction
	Additional information
	Basic architecture
	Areas of the IDE that can be extended
	History of the Open Tools API
	Accessing the IDE
	Getting started to create an IDE plugin
	Extending the IDE with custom repository wizards
	function TUnitFile.GetSource: string;var Text, ResName: AnsiString; ResInstance: THandle; HRes: HRSRC;begin Resname := AnsiString(SCodeResName); ResInstance := FindResourceHInstance(HInstance); HRes := FindResourceA(ResInstance, PAnsiChar(ResName), PAnsiChar(10)); Text := PAnsiChar(LockResource(LoadResource(ResInstance, HRes))); SetLength(Text, SizeOfResource(ResInstance, HRes)); Result := Format(string(Text), [FModuleName, FFormName, FAncestorName]);end;
	Extending the IDE with custom docking panels
	Accessing the Delphi code editor
	Extending the Delphi IDE menu
	Extending the Delphi project manager context menu
	Adding an IDE editor context menu item and grabbing the selected text
	Adding information on the Delphi splash screen
	Free TMS IDE plugins for Delphi XE
	TMS Project Manager plugin
	TMS What’s new plugin
	TMS Presentation tool plugin

	About the Author
	Word Bookmarks
	OLE_LINK1
	OLE_LINK2

